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Abstract: This review presents the idea of phytoremediation which is a generic term given to a set of 

technologies that uses different plants to contain, extract, degrade or immobilize contaminants from soil and 

water. Being a cost saving procedure compared to conventional treatments it has become an interesting method 

in remediation technology. Moreover, for developing countries like Bangladesh, along with the cost 

effectiveness, phytoremediation is also suitable for its environmental friendly and aesthetically pleasing 

approach. This paper reports about the mobility, bioavailability and plant response to the presence of harmful 

contaminants in our environment. It also gives an insight into the work done by authors, which focuses on 

modifying plants to have increased phytoremediation properties, studying the expression profile of miRNAs and 

their target genes responsible for phytoremediation. Thus, this paper attempted to provide a concise review on 

recent progresses in research and convenient applications of phytoremediation for environmental resources. 
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1. Introduction 

There is a growing trend in areas of land, surface waters and groundwater around the world affected by 

contamination from industrial and agricultural activities either due to ignorance, lack of vision, or carelessness 

(Hauqe et al., 2016; Ross et al., 2006; Yang et al., 2013). For example, concentrations of Cu, Zn, Pb, Cr, Cd, 

Fe, and Ni estimated in soils and vegetables grown in and around an industrial area of a developing country, 

Bangladesh showed the following order of metal contents in contaminated irrigation water: Fe 

>Cu>Zn>Cr>Pb>Ni>Cd. (Ahmad and Goni 2010). Another study based on Dhaka Export Processing Zone 

(DEPZ) area showed slight variation in the order which is Zn>Cu>Sr >Pb>Ni>Cr >Li>Co>V>Se>As>Ag in 

composite industrial effluents (Ahmed et al., 2012). The results revealed that the water present in the surface of 

this area is highly contaminated (Ahmed et al., 2012). The most dangerous news is that a study provides a 

spatial assessment of the risk of arsenic contamination of the principal food of Bangladesh, rice, because of the 

use of arsenic polluted groundwater for irrigation (Ross et al., 2006). So it has become very important for us to 

find a way to remove these contaminants from our environment. 

Compared to other traditional remediation engineering techniques, phytoremediation is very much cost-effective 

and a fledgling technology intended to address a wide variety of surficial contaminants. It is a recent developed 

method of environmental clean-up. (Grichko et al., 2000). Being  an  integrated  multidisciplinary approach  to  

the  cleanup  of  contaminated  soils,  which combines  the  disciplines  of  soil  chemistry,  soil  microbiology 

and plant physiology (Cunningham and Ow, 1996), phytoremediation has been applied to a number of 

contaminants in small-scale field and/or laboratory studies. 

microRNAs (miRNAs) are approximately 21-nucleotide (nt) non-coding RNAs that play critical roles in gene 

expression regulation at the post-transcriptional level. In plants, cleavage of the target mRNA appears to be the 

prevalent method of post-transcriptional regulation (Brodersen et al., 2008). Although miRNAs have been 
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intensively studied over the last few years, little research is performed on the role of miRNAs in various organic 

material stress responses like heavy metal (Ross et al., 2006). Nevertheless, a number of studies verified the 

involvement of miRNAs in responses to different metal toxicities (Sunkar et al., 2006), mostly using screenings 

like microarrays (Ding et al., 2011) and deep sequencing of small RNA libraries (Zhou et al., 2012a). These 

studies were performed on different species such as Arabidopsis thaliana (Kopriva 2006; Sunkar et al., 2006), 

Medicago truncatula (Zhou et al., 2012b), Brassica napus (Huang et al., 2010; Zhou et al., 2012a), Oryza sativa 

(Ding et al., 2011), Nicotiana tabacum (Burklew et al., 2012) and Phaseolus vulgaris (Valdés‐López et al., 

2010).  

Using these information, progresses have been made in practical application aspects of phytoremediation. Plant 

growth promoting bacteria are also used to increase the phytoremediation properties of plant (Das et al., 2016). 

They all were reviewed and reported in this paper. 

 

2. Techniques of phytoremediation  

Phytoremediation of environmental components like water or soil contaminated by organic materials such as 

metals can be achieved by a number of techniques (Saxena et al., 1999).  

 

2.1. Phytoextraction  

Phytoextraction relies on the ability of  organic molecule-accumulating plants to transport and concentrate 

polluting components from soil into the harvestable above ground shoots (Salt et al., 1998; Vassil et al., 1998). 

The plant material can subsequently be used for non-food purposes (e.g. wood, cardboard) or ashed, followed by 

disposal in a landfill or, in the case of valuable components, the accumulated element can be recycled. The latter 

is termed phytomining (Chaney et al., 1997). 

For example a list of several metal hyperaccumulator species with respective metal accumulated is given in 

Table 1. 

 

Table 1. Several metal hyperaccumulator species with respective accumulated metal. 

 
Plant species Metal References 

Thlaspi caerulescens, 

Arabidopsis halleri  

Zn, Cd (Reeves and Brooks, 1983; Baker and Walker, 1990) (Baker 

and Brooks, 1989; Cosio et al., 2004) 

Ipomea alpina  Cu (Baker and Walker, 1990) 

 Acuminata Sebertia, Thlaspi 

goesingens, Alyssum bertolonii, 

Stackhousia tryonii 

Ni (Jaffré et al., 1979), (Krämer and Chardonnens, 2001), 

(Chaney et al., 1997) and (Bhatia et al., 2005) 

Arabidopsis thaliana Zn, Cu, Pb, Mn, P (Lasat, 2002) 

Sonchus asper  Pb, Zn (Yanqun et al., 2005) 

Corydalis pterygopetala Zn, Cd (Yanqun et al., 2005) 

Sedum alfredii  Pb, Zn (Li et al., 2005) 

Helianthus anus  Cd, Cr, Ni (Turgut et al., 2004) 

 

2.2. Rhizofiltration 

This technique is used for cleaning contaminated surface waters or waste waters by adsorption or precipitation 

of organic contaminants onto roots or absorption by roots or other submerged organs of tolerant aquatic plants 

(Dushenkov et al., 1995; Horne et al., 2000).  

 

2.3. Phytostabilization 

The term denotes the use of plants to stabilize pollutants in soil (Berti and Cunningham, 2000). 

Phytostabilization of contaminant may employ plants to reduce leaching, runoff, and erosion (Berti and 

Cunningham, 2000; Burken et al., 2000; Krämer and Chardonnens, 2001).   

 

2.4. Phytodegradation  
In phytodegradation, organic pollutants are converted by internal or secreted enzymes into compounds with 

reduced toxicity (Schnoor et al., 1995; Salt et al., 1998; Suresh and Ravishankar, 2004).  
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2.5. Rhizodegradation  

Like phytodegradation, rhizosphere degradation involves the enzymatic breakdown of organic pollutants, but 

through microbial enzymatic activity. These breakdown products are either volatilized or incorporated into the 

microorganisms and soil matrix of the rhizosphere (Dzantor, 2007).   

 

2.6. Phytovolatilization  

The process refers to the release of pollutants from the plant to the atmosphere as gas. Although it works well 

for organics, this can be used for a few inorganics that can exist in volatile form, i.e. Se, Hg and As (Zayed et 

al., 2000).  

Finally, a combination of phytoremediation approaches can be used for more effective environmental 

restoration. 

 

3. Molecular studies related to phytoremediation 

So far, more than 400 plant species have been reported as major soil contaminant, metal hyperaccumulators, 

representing less than 0.2% of all angiosperms (Ross et al., 2006; Yang et al., 2013). Promising studies at 

molecular level shows that the major soil contaminant in our dying industrial area of our country, Zinc (Zn) 

uptake is regulated by ZIP family genes in Arabidopsis thaliana (Shahandeh and Hossner, 2000; Haque et al., 

2016). Another study shows that bermudagrass (Cynodon dactylon) and switchgrass (Panicum virgatum) can 

accumulate Chromium (Cr) (Shahandeh and Hossner, 2000), the major soil contaminant of our leather industrial 

area. Moreover, some other studies proved that regulating genes in transgenic plant like alo vera (Das et al., 

2016). In addition, increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to 

accumulate Cd, Co, Cu, Ni, Pb, and Zn (Grichko et al., 2000). As the many impostant genes like ABC, ARF8 

responsible for phytoremediation are regulated by microRNA, it could be targeted for regulating the 

phytoremediation properties of plants. Various miRNAs have been identified that are responsible for regulating 

the genes responsible for phytoremediation (Gielen et al., 2012; Yang et al., 2013). And expression profile of 

some crucial miRNAs and their corresponding target genes regarding  phytoremediation properties have been 

checked in a native plant of our country named jute (Corchorus olitorius), the golden fiber of Bangladesh 

(Haque et al., 2016). The results indicate that jute is an accumulator of Mn and Cr but not As. Jute would 

therefore be a good candidate in the remediation of soil rich in Mn and Cr (Haque et al., 2016). And further 

modified regulation through miRNAs can improve the phytoremediation properties of jute as well as other 

plants. 

 

4. Conclusions 

Phytoremediation is a low-risk and attractive cleanup method. The research of phytoremediation is time-

consuming and tedious despite of having a relatively simpler concept. But the process of soil removal and 

material extraction of various contaminants is even more disruptive and expensive. Hence, phytoremediation 

may be the best alternative for a developing country like Bangladesh. With the advancement in biotechnology, 

the potentials of hyperaccumulators may be significantly increased through specific organic contaminant gene 

identification and its transfer in certain promising species. 
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