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Computer vision (CV) is rapidly transforming agricultural practices by enabling automated perception across 

various scales, from organ-level features in greenhouses to field-scale crop monitoring using unmanned aerial 

vehicles (UAVs). Recent studies have demonstrated effective object detection for weeds, fruits, and plant 

organs, along with high-throughput plant phenotyping and integrated perception-action loops in robotic systems 

(Sharma et al., 2024; Li et al., 2024; Zhang et al., 2025; Wang et al., 2025). Deep learning detectors, 

particularly modern YOLO variants, along with transformer-based architectures, are now routinely 

benchmarked on agricultural datasets and are increasingly optimized for edge deployment (Sharma et al., 2024; 

Li et al., 2024). Simultaneously, UAV and sensor-fusion pipelines are advancing to provide timely agronomic 

intelligence for growth monitoring, stress detection, and yield prediction (Wang et al., 2024; Impollonia et al., 

2024; Wang et al., 2025). In postharvest food safety, UV-fluorescence imaging combined with deep learning 

techniques (such as YOLO, CNN, and ANN) has demonstrated promise for the rapid screening of aflatoxin in 

cocoa beans (Sadimantara et al., 2023; Sadimantara et al., 2024a; Sadimantara et al., 2024b). Complementing 

these advances, a recent study on Citrus reticulata (cv. Batu 55) demonstrated that combining reflectance and 

fluorescence images with a DCNN regression model (XSE-ResNet50) accurately predicts SSC, acidity, 

firmness, and the Brix–acid ratio (Al-Riza et al., 2024). 

This editorial synthesizes and highlights advances in three key areas, first, robust detection in unstructured field 

conditions; second, speed–accuracy–compute trade-offs that facilitate real-time deployment; and third, the 

translation of visual perception into agronomic decision-making. It emphasizes evidence for model 

generalizability and actionable outputs while outlining policy and research priorities to accelerate the 

trustworthy adoption of precision agriculture (Bjerge et al., 2024; Hasan et al., 2025; Alex et al., 2025). 

Field deployment of CV systems in agriculture is primarily constrained by generalization issues and data 

scarcity. Field conditions change due to factors such as phenology, illumination, occlusion, and background 

clutter, making it challenging for models trained in one environment to transfer reliably across different sites 

and seasons. For instance, in winter-wheat weed detection, authors specifically highlight gaps in dataset 

diversity and model adaptability as significant bottlenecks. This has led to the release of multi-species datasets 

and the systematic benchmarking of state-of-the-art detectors and transformer architectures (Li et al., 2024). 

Complementary research indicates that non-local modeling and attention mechanisms enhance global context 

and improve the recognition of small or partially occluded targets, all without incurring prohibitive 

computational overhead (Li et al., 2024; Wang et al., 2024). 
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A second constraint relates to the balance between speed, accuracy, and computational requirements for real-

time operation. Comparative studies show that recent YOLO generations can exceed classical two-stage 

pipelines in accuracy while achieving significantly lower inference times. This enables practical deployment in 

the field. In several weed-detection benchmarks, these models demonstrated strong mAP with latency in the 

sub-tens-of-milliseconds range (Sharma et al., 2024; Zoubek et al., 2025; Kalezhi and Shumba, 2025). 

Hardware-aware optimization and quantization techniques, such as TensorRT, help maintain high frame rates on 

embedded platforms with only modest accuracy trade-offs. This is essential for on-robot or UAV autonomy, 

where energy and compute budgets are limited (Li et al., 2024). 

Ultimately, impact depends on converting perception into action. Emerging end-to-end systems now integrate 

visual inference with robotic manipulation and control. For instance, beehive handling systems combine 

YOLO/DeepSORT tracking with hybrid control to enhance accuracy, stability, and cycle time (Wang et al., 

2025). In mechanized harvesting, attention-enhanced detectors and geometric reasoning have enabled reliable 

localization of pick points for small, occluded targets. This advancement moves vision pipelines beyond passive 

detection and toward executable agronomic operations (Wang et al., 2024; Deng et al., 2024; Zhang et al., 

2025). 

Scientists and engineers are continuously refining model architectures to address the visual challenges presented 

by agricultural scenes, dense canopies, small targets, and heterogeneous multi-class settings, all while balancing 

accuracy with deployment feasibility (Sharma et al., 2024; Wang et al., 2024; Li et al., 2024). In the context of 

weed control, combining morphology-aware meta-learning with object detection has enhanced transferability 

across datasets and locations. This marks significant progress toward site-independent detection and more 

sustainable reductions in herbicide use (Hasan et al., 2025; Zoubek et al., 2025). 

Translational value relies on delivering outputs that align with agronomic calendars and decision thresholds. 

Agronomists and advisors seek actionable predictions, such as early-season yield estimates during tillering or 

ripening to inform nitrogen management, as well as lodging maps that facilitate harvest logistics (Impollonia et 

al., 2024; Zhang et al., 2024). On the operational side, growers and service providers benefit from edge-

deployable detectors and optimized pipelines—such as quantization and acceleration—that ensure field-speed 

inference (Sharma et al., 2024; Li et al., 2024). In protected cultivation, low-cost phenotyping with pan–tilt–

zoom cameras allows for high-accuracy capture of organ-level traits and generates data streams that support 

both daily operations and artificial intelligence (AI) model development (Pham et al., 2024). Ecologists and 

biodiversity managers are utilizing time-lapse detection and classification to monitor arthropod abundance in 

relation to floral resources, beyond just production. Motion-informed filtering helps reduce false positives, 

allowing for scalable, long-term observation (Bjerge et al., 2024). Actors focused on food quality and safety are 

also advancing non-destructive analytics, such as fluorescence hyperspectral imaging for estimating sucrose in 

apples and hyperspectral screening for detecting pesticide residues in olives (Zhan et al., 2024; Martínez Gila et 

al., 2024). 

Realizing these gains at scale will require supportive data and governance infrastructures. Policymakers and 

funders should prioritize open, findable, accessible, interoperable, and reusable (FAIR) datasets, as well as 

cross-site benchmarks, to mitigate vendor lock-in, accelerate reproducibility, and strengthen robustness—

priorities consistently underscored in recent surveys and thematic reviews of UAV-enabled monitoring and 

land-use dynamics (Wang et al., 2024a; Ma et al., 2024; Mathewos et al., 2024; Qin et al., 2024; Wang et al., 

2025). 

Building trustworthy agricultural AI starts with benchmarking and utilizing open, transferable data. Curated and 

diverse datasets enriched with agronomic metadata—covering phenology, management practices, and 

environmental context—provide a solid foundation for reproducible evaluations and fair comparisons across 

methods. Recent releases, such as multi-species winter-wheat weed image collections, have facilitated 

systematic ablation of architectural components, including spatial attention, non-local blocks, and deformable 

convolutions, clarifying the sources of performance gains (Li et al., 2024). In parallel, strategies such as semi-

supervised annotation, morphology-based grouping, and lightweight two-stage pipelines are effectively reducing 

labelling burdens while preserving generalization. These approaches are successfully scaling training corpora 

without sacrificing quality (Khanna et al., 2024; Calderara-Cea et al., 2024; Hasan et al., 2025). 

Equally important is the delivery of edge-ready, explainable models that meet real-time constraints in the field. 

Comparative studies indicate that newer YOLO iterations provide state-of-the-art accuracy for weed detection, 

with YOLOv11 offering particularly fast inference suitable for embedded hardware (Sharma et al., 2024). 

Hardware-aware optimizations, such as TensorRT FP16 quantization, help maintain high throughput with 

minimal accuracy loss. This is essential for deploying mobile robots and UAVs that operate under tight energy 

and compute constraints (Li et al., 2024). Where systems are operated by non-technical users, implementing 
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explainable interfaces for detections and tracking enhances transparency and auditability, thereby supporting 

safer and more confident decision-making (Alex et al., 2025). 

Progress also depends on integrating and fusing sensing modalities into agronomic workflows. By combining 

ground-based imaging, PTZ-camera phenotyping, and UAV remote sensing, we can connect organ-, canopy-, 

and field-scale insights to actionable prescriptions (Pham et al., 2024; Wang et al., 2024; Wang et al., 2025). 

Demonstrated pipelines effectively translate maps into management strategies, including early-season yield 

predictions to guide nitrogen decisions, lodging segmentation to streamline harvesting logistics, and site-specific 

treatment targeting that reduces inputs while maintaining efficacy (Impollonia et al., 2024; Zhang et al., 2024). 

As autonomy expands for workers and animals, rigorous validation of trajectory error, vibration, and operational 

stability remains essential. Recent studies on beehive handling provide concrete metrics and controls (Wang et 

al., 2025). Sustained training for agronomists and technicians in uncertainty literacy and basic model auditing 

will be essential for the safe and effective large-scale adoption of these practices (Bjerge et al., 2024; Alex et 

al., 2025). 

Recent progress indicates a significant advancement in managing fine-grained agricultural targets. Attention-

enhanced and transformer-augmented detectors, combined with geometric post-processing, are enhancing the 

recognition and localization of pick points for small, occluded structures that are crucial to harvesting 

workflows (Wang et al., 2024; Zhang et al., 2025). Parallel gains in dense-object detection are being achieved 

through high-resolution inputs and purpose-built datasets, as exemplified by blueberry canopy imaging for joint 

detection, counting, and maturity estimation (Deng et al., 2024). Postharvest quality analytics are also 

advancing. Fluorescence hyperspectral imaging, combined with wavelength selection and ensemble learning, 

shows promising accuracy in predicting sucrose concentration in apples, while pixel-wise hyperspectral 

classification demonstrates feasibility for detecting pesticide residues and estimating the time since application 

in freshly harvested olives (Martínez Gila et al., 2024; Zhan et al., 2024). 

Opportunities also arise from increased robustness and ecological diversity. In weed management, morphology-

aware classification using Siamese networks integrated into modern detectors provides site-independent 

performance across multiple public datasets, which is essential for scalable, geography-agnostic deployment 

(Hasan et al., 2025). Lightweight, quantized YOLO variants enable real-time inference in field conditions, 

effectively balancing speed and accuracy on embedded hardware (Sharma et al., 2024). Beyond production 

plots, biodiversity and pollination monitoring now utilize time-lapse detection pipelines and EfficientNet-based 

classification. Motion-informed filtering reduces false positives, and explainable interfaces translate bee 

detection events into stakeholder-friendly reports (Bjerge et al., 2024; Alex et al., 2025). High-throughput 

phenotyping at scale benefits from pan-tilt-zoom camera systems, which capture zoomed organ-level traits with 

high precision. This generates continuous data streams for operational decision-making and future model 

training (Pham et al., 2024). Finally, low-altitude UAV remote sensing is increasingly integrating with machine 

and deep learning for growth, stress, and yield analytics, strengthening the connection from multiscale imagery 

to actionable agronomic intelligence (Wang et al., 2024; Wang et al., 2025). 

Evidence from the cited literature indicates that CV and deep learning are evolving from detection-only 

prototypes to integrated perception-decision-action systems. Enhancements in dataset quality, architectural 

design—particularly attention mechanisms and non-local modeling—and hardware-aware optimization now 

support robust performance in complex field scenes and enable real-time deployment on edge platforms 

(Sharma et al., 2024; Li et al., 2024). Several exemplars effectively close the loop from sensing to management: 

robotic manipulation and safe material handling, early yield prediction to inform nitrogen management, lodging 

maps that streamline harvesting logistics, and nondestructive quality screening to guide postharvest decisions 

(Impollonia et al., 2024; Zhang et al., 2024; Zhan et al., 2024; Wang et al., 2025). 

Scaling impact responsibly will require the expansion of open, diverse datasets enriched with agronomic 

context. It will also necessitate prioritizing edge-deployable, explainable models that are explicitly evaluated on 

the speed–accuracy–compute frontier. Additionally, there should be a tighter integration of sensing modalities to 

ensure that outputs directly translate into actionable agronomic interventions. Sustained investment in safety, 

skills, and farmer-centered validation should accompany these technical advances. With coordinated efforts 

among researchers, practitioners, and policymakers, vision-enabled agriculture can achieve higher productivity, 

reduced inputs, and greater ecological resilience (Bjerge et al., 2024; Wang et al., 2025; Alex et al., 2025). 
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